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Abstract. In this paper it is shown how the long-standing problem of the break-up of a cylindrical interface due
to surface tension can be generalized to an arbitrary number of interacting interfaces in an arbitrary configuration.
A system of immersed threads starting with two types of configurations is studied, i.e. , a system of threads on a
row and a system of threads at triangular vertices. From these cases, which are worked out in detail, it becomes
clear how the stability of an arbitrary configuration can be determined. The (in)stability of the configuration is
discussed in terms of the so-called disturbance growth rate. It turns out that the threads break up in specific phase
patterns in which neighbouring threads are either in-phase or out-of-phase. For L threads, in principle 2L phase
patterns are possible. However, it is shown that the stability of the system directly follows from L so-called basic
phase patterns. Special attention is paid to the special case of threads and fluid having equal viscosity. Then, the
growth rate can be calculated analytically using Hankel transformations. An estimate for the growth rate in this
case, which turns out to be quite sharp, is derived.
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1. Introduction

Nowadays, the demand for new synthetic materials is increasing and becoming more specific.
New synthetic materials may be produced by blending different types of polymers. The ma-
terial properties of a polymer blend are strongly related to its morphology determined by the
blending process in an extruder. Therefore, the eventual material properties can be predicted
only if a thorough understanding of this blending process is available. In the extruder, dry
granules of two types of polymers are supplied into the hopper. Due to heating, by external
heat sources and internal friction, the granules melt. In the melt, we distinguish between the
dispersed phase and the continuous phase (or matrix phase). The polymer with the lowest
volume fraction is called the dispersed phase. Subsequently, the blending takes place by the
shear flow caused by the screw. Due to dominant shear stresses, long threads are formed. If the
blend contains a large volume fraction of the threads, the interactions between the threads are
of essential importance for the way they break up. Therefore, a mathematical model simulating
the break-up behaviour may provide important insights for control of the production process
such as for the spatial distribution of the droplets.

The study of the break-up of liquid threads has a distinguished history, starting with the
work of Savart [1] in the early nineteenth century. He showed that the break-up of a jet of
water always occurs, independently of the direction of gravity, the type of fluid, or the jet
velocity and radius. Some years later, Plateau [2] discovered that the source of the break-up is



26 A.Y. Gunawan et al.

surface tension. The dynamical description of the problem, in terms of linear stability theory,
was first given by Rayleigh [3]. He considered the stability of a long cylindrical column of
an incompressible perfect (i.e., inviscid) fluid under the action of capillary forces, neglecting
the effect of the surrounding fluid. In his paper, Rayleigh developed the important concept
of the mode of maximum instability. He showed that, from an initially small disturbance, a
number of unstable waves may form on the jet surface; the wave that causes the jet to break
up is the one with maximum instability, which is measured by the so-called growth rate, to
be defined later on. The case of an incompressible, cylindrical column of viscous liquid has
also been discussed by Rayleigh [4]. Assuming the viscosity to be dominating over the inertia
and neglecting the effect of the surrounding fluid, he found that the maximum instability
occurs when the wave length of the disturbance is very large in comparison with the radius of
the initial cylinder. Following Rayleigh’s approach, Tomotika [5, 6] generalized the analysis
to include viscosity for both the fluid column and the surrounding fluid. He found that the
instability of the jet is strongly influenced by the ratios of the viscosities and densities of jet
and surrounding fluid, and of the Ohnesorge number, a dimensionless parameter representing
the ratio of viscous and interfacial-tension forces. If the ratio of viscosities of the two fluids is
neither zero nor infinite, the maximum instability always occurs at a definite wave length. A
generalisation of Tomotika’s stability analysis for several limiting cases such as low-viscosity
liquid jet in a gas, gas jet in a low viscosity liquid, etc., was discussed by Meister and Scheele
[7]. Mikami et al. [8] improved Tomotika’s theory both theoretically and experimentally. The
theoretical study of the break-up of a liquid thread is studied to some extent in [9, 10, 11,
12, 13, 14, 15]. A wide-ranging review of a large number of theoretical and experimental
investigations of the break-up process of one thread is given by Eggers [16].

In [17], we extended the work of Tomotika by studying the dynamics of a set of two liquid
threads immersed in a fluid. The system was modelled by the Stokes equations, which we
solved by means of separation of variables in two systems of cylindrical coordinates, each one
connected to one of the threads. The dependence on the azimuthal coordinates was expressed
in terms of a Fourier expansion. We examined the influence of small initial disturbances of
the threads based on both zero-order and first-order Fourier expansions. The results showed
that the break-up behaviour of the threads is again determined by the growth rate q which in
this case also depends on the distance b between the threads. The results also revealed that an
extension from a zero to a first-order Fourier expansion leads to small quantitative corrections
only. For the two-threads system, we found that the threads may break up either in-phase or
out-of-phase. These findings were in agreement with the experiments reported in [18] and
[19].

In the present work, we consider the dynamics of a number of L threads ( L > 2) for two
types of configurations. First, we consider the dynamics of a row of equally spaced immersed
threads. Second, we determine the dynamics of the threads when they have a triangular con-
figurations. The dynamics of the 3-threads system will be worked out by use of the zero-order
Fourier expansion. This serves as a guide for the solution of the L-threads system with L > 3.
Next, the instability of the L-threads system is determined. It turns out that the threads will
disintegrate with neighbouring threads being either in-phase or out-of-phase. The instability
problem leads to an L by L matrix differential equation. The behaviour of the system is
determined by the eigenvalues of the matrix. We show how the eigenvectors are related to
L so-called basic phase patterns. The break-up behaviour of the system as a whole can be
expressed completely in terms of the behaviour of these basic patterns.
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We also derive an analytical formula for the growth rate for the special case of threads and
fluid having equal viscosities. In experiments, this corresponds to two immiscible fluids of
equal viscosity. Stone and Brenner [20] provided a direct method to derive an explicit formula
for the single-thread case. They used the idea of a ring force in which the normal stress jump at
the interface arising from surface tension is represented by a delta function. The use of Hankel
transforms then led to an explicit formula for the radial velocity and from that for the growth
rate q. We extend this work by studying the non-axisymmetric breakup of L immersed threads.
Thanks to the Toeplitz form of the matrix in our system of ODE’s, we are able to present an
analytical upper bound for the growth rate. Numerical evaluations show that this upper bound
is quite close to the least upper bound.

The paper is organized as follows. In Section 2, the mathematical model for L immersed
threads is derived both for threads on a row and for threads at triangle vertices. The solution
is written in terms of a Fourier expansion. The zero-order mode solution is worked out and
the solution for the unknown coefficients is presented. Based on this solution, the stability of
the system is investigated. In Section 3, the stability of liquid threads immersed in a fluid is
discussed, for the special case of threads and fluid having equal viscosities. For two threads an
analytical formula for the growth rate is derived. For L threads (L > 2), an analytical upper
bound for the growth rate is found. Results are given in Section 4 and conclusions in the last
section.

2. Modelling L immersed threads

2.1. ROW CONFIGURATION

2.1.1. Mathematical model and solution methodology
Consider a sequence of L infinitely long parallel threads, equally spaced with distances b.
All threads have viscosity ηd . They are surrounded by a fluid with viscosity ηc. The indices
c and d refer to the continuous phase (surrounding fluid) and the dispersed phase (threads),
respectively. We denote the ratio of the viscosities by

µ = ηd

ηc
. (1)

For thread j (j = 1, · · · , L), a cylindrical coordinate system (rj , φj , zj ) will be used with z

measured along the thread. In Figure 1, the coordinates rj and φj are indicated for a system
with L = 3. In general, if thread J is taken as frame of reference, we have the relations
(j, J = 1, · · · , L):

rJ cos φJ = (j − J )b + rj cos φj ,

rJ sin φJ = rj sin φj ,

zJ = zj .

(2)

Let us consider a perturbation of threads, that is periodic in z with wave number kj . Because
the problem is not axisymmetric, the disturbance of thread j may also depend on φj . This
dependence is represented by a Fourier expansion. The radius Rj of thread j is then written
as

Rj(φj , z, t) = a

[
1 +

∞∑
m=0

εj,m(t) cos mφj cos(kj z − αj )

]
. (3)
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Figure 1. Cylindrical coordinate systems for L = 3.

Since the z-axes of all threads are parallel, we dropped the index j from the z-coordinates.
Here, a is the initial radius of the threads, εj,m is the time dependent amplitude of the m-th
mode, and αj is the phase of this mode. The εj,m and αj are unknown in advance.

The dynamics of the disintegrating threads under this perturbation is known if we calculate
the velocity field v. Since all movements are slow due to the high viscosity, we use the creeping
flow approximation and assume v to satisfy the Stokes equation. The fluids are incompressible,
so the incompressibility condition holds. Thus, we model the system by:

∇ · v = 0, (4a)

∇p = η̂�v. (4b)

Here, p is the pressure and v = (u, v,w) are the velocities in radial, azimuthal and axial
direction, respectively. Inside the threads we have η̂ = ηd and outside the threads η̂ = ηc.
In cylindrical coordinates, the Stokes equations in terms of the coordinate system attached to
thread j read as

0 = 1

rj

∂
[
rjuj

]
∂rj

+ 1

rj

∂vj

∂φj

+ ∂wj

∂z
(5a)

∂pj

∂rj

= η̂

[
1

rj

∂

∂rj

[
rj

∂uj

∂rj

]
+ 1

r2
j

∂2uj

∂φ2
j

+ ∂2uj

∂z2
− 2

r2
j

∂vj

∂φj

− uj

r2
j

]
(5b)

1

rj

∂pj

∂φj

= η̂

[
1

rj

∂

∂rj

[
rj

∂vj

∂rj

]
+ 1

r2
j

∂2vj

∂φ2
j

+ ∂2vj

∂z2
+ 2

r2
j

∂uj

∂φj

− vj

r2
j

]
(5c)

∂pj

∂z
= η̂

[
1

rj

∂

∂rj

[
rj

∂w

∂rj

]
+ 1

r2
j

∂2wj

∂φ2
+ ∂2wj

∂z2

]
. (5d)

The system is brought into dimensionless form if the following scalings are applied:

rj = ar∗
j , z = az∗, b = ab∗, Rj = aR∗

j , vj = σ

ηc
v∗

j , pj = σ

a
p∗

j , and kja = k∗
j , (6)
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where σ is the surface tension. In the sequel we omit the asterisks, since confusion is not
possible. Separating variables and expressing the dependence on φ in terms of Fourier modes,
we propose as general expressions for the solution inside thread j :

pd
j (rj , φj , z, t) =

∞∑
m=0

pd
j,m(rj , t) cos mφj cos(kj z − αj), (7a)

ud
j (rj , φj , z, t) =

∞∑
m=0

ud
j,m(rj , t) cos mφj cos(kjz − αj), (7b)

vd
j (rj , φj , z, t) =

∞∑
m=1

vd
j,m(rj , t) sin mφj cos(kjz − αj ), (7c)

wd
j (rj , φj , z, t) =

∞∑
m=0

wd
j,m(rj , t) cos mφj sin(kjz − αj). (7d)

The same holds for the continuous phase with the index d replaced by c. For example, the
radial velocity of the continuous phase with respect to thread j for j = 1, · · · , L is written as

uc
j =

∞∑
m=0

uc
j,m(rj , t) cos mφj cos(kj z − αj). (8)

Substitution of (7) and (8) in (5) yields equations for the coefficients, m ≥ 0,

0 = 1

rj

∂
[
rjuj,m

]
∂rj

+ m

rj

vj,m + kjwj,m, (9a)

∂pj,m

∂rj

= η̂

[
1

rj

∂

∂rj

[
rj

∂uj,m

∂rj

]
− m2 + 1 + (kj rj )

2

r2
j

uj,m − 2m

r2
j

vj,m

]
, (9b)

−m

rj

pj,m = η̂

[
1

rj

∂

∂rj

[
rj

∂vj,m

∂rj

]
− m2 + 1 + (kj rj )

2

r2
j

vj,m − 2m

r2
j

uj,m

]
, (9c)

−kjpj,m = η̂

[
1

rj

∂

∂rj

[
rj

∂wj,m

∂rj

]
− m2 + (kj rj )

2

r2
j

wj,m

]
. (9d)

In (9), we omitted the superscripts c and d since these equations hold for both phases. The
solution of (9) has already been discussed in [17]. Here, we only present the results. For r < 1
we find:

pd
j,m(rj , t) = 2µAj,mIm(kj rj ), m ≥ 0, (10a)

ud
j,0(rj , t) = Aj,0rj I0(kj rj ) −

[
Bj,0 + 2

kj

Aj,0

]
I1(kj rj ), (10b)
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ud
j,m(rj , t) = Aj,mrj Im(kj rj ) −

[
Bj,m + (m + 2)

kj

Aj,m

]
Im+1(kj rj )

+Cj,m

rj

Im(kj rj ), (11a)

vd
j,0(rj , t) = 0, (11b)

vd
j,m(rj , t) = −

[
Bj,m + (m + 2)

kj

Aj,m + kj

m
Cj,m

]
Im+1(kj rj ) − Cj,m

rj

Im(kj rj ), (11c)

wd
j,m(rj , t) = −Aj,mrj Im+1(kj rj ) + Bj,mIm(kj rj ), m ≥ 0, (11d)

and for r > 1:

pc
j,m(r, t) = 2Dj,mKm(kj rj ), m ≥ 0 (12a)

uc
j,0(r, t) = Dj,0rjK0(kj rj ) +

[
Ej,0 + 2

kj

Dj,0

]
K1(kj rj ), (12b)

uc
j,m(r, t) = Dj,mrjKm(kj rj ) +

[
Ej,m + (m + 2)

kj

Dj,m

]
Km+1(kj rj )

+Fj,m

rj

Km(kj rj ), (12c)

vc
j,0(r, t) = 0, (12d)

vc
j,m(r, t) =

[
Ej,m + (m + 2)

kj

Dm + kj

m
Fj,m

]
Km+1(kj rj ) − Fj,m

rj

Km(kj rj ), (12e)

wc
j,m(r, t) = Dj,mrjKm+1(kj rj ) + Ej,mKm(kj rj ), m ≥ 0. (12f)

Coefficients Aj,m, Bj,m, etc., depend on time t and are to be determined from the boundary
conditions at the interface.

The solution for the continuous phase is influenced by all threads. As an ansatz, we repres-
ent the solution outside the threads by the linear combination of expansions like the one in (8)
with respect to all the different threads; j = 1, · · · , L. This linear combination automatically
satisfies the governing equations (4). Its coefficients will follow from the application of the
boundary conditions around each thread. The addition of the velocities (uj , vj , wj ) is done
vectorially, while the scalar quantities pj are simply added. The resulting sums could be
represented in any of the cylindrical coordinate systems of the L-threads. Taking for this
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thread J and indicating this with subscript (J ), we obtain the representations

pc
(J ) =

L∑
j=1

pc
j , (13a)

uc
(J ) =

L∑
j=1

[
uc

j cos(φJ − φj ) + vc
j sin(φJ − φj )

]
, (13b)

vc
(J ) =

L∑
j=1

[
−uc

j sin(φJ − φj) + vc
j cos(φJ − φj)

]
, (13c)

wc
(J ) =

L∑
j=1

wc
j . (13d)

Let us consider the boundary conditions at the interface of thread J . Here, we apply a
linearization procedure, i.e., we evaluate the boundary conditions at the unperturbed thread
(R = 1) and we only consider terms up to the first order in ε. The continuity of the velocities
is written as

[[u]]J = 0, [[v]]J = 0, [[w]]J = 0. (14)

Here, [[u]]J ≡ ud
J −uc

(J ) denotes the jump in the radial velocity at thread J . The other boundary
conditions are the kinematic and the dynamic conditions. The kinematic boundary condition
requires that

ud
J = ∂RJ

∂t
. (15)

The dynamic boundary conditions require that

[[n · π · t]]J = 0, (16a)

[[n · π · n]]J = −σ

(
1

R1
+ 1

R2

)
. (16b)

Here, n is the unit normal vector pointing outwards, t the unit tangent vector, σ the surface
tension, R1 and R2 the principle radii of curvature, and π the total stress tensor defined by

π = −p δ + τ , (17a)

τ = η̂[∇v + (∇v)T ]. (17b)

Here δ is the unit tensor, τ is the extra stress tensor, and T stands for the transpose. At thread
J , the boundary conditions are, to first order,

[[τrφ]]J = 0, (18a)

[[τrz]]J = 0, (18b)

[[−p + τrr ]]J = −
( ∞∑

m=0

[m2 + k2 − 1]εJ,m(t) cos mφJ

)
cos(kJ z − αJ ). (18c)
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In view of (11–13), the evaluation of the boundary conditions at thread J requires to
expand the product of a Bessel function and a Fourier expansion with respect to thread j ,
j �= J , around thread J . To handle this, we use the geometrical relations (2) and Graf’s
addition theorem of Bessel function (see [21, Formula 11.3(8)]). We finally obtain solutions
by applying the method of moments.

2.1.2. Evaluation of boundary conditions
For clarity, we restrict ourselves in this section to the zero-order Fourier expansion, since this
lowest mode already yields a reliable solution as shown in [17].

Let thread J , 1 ≤ J ≤ L, be taken as frame of reference. The evaluation of boundary
conditions at its interface requires to express all quantities in terms of (rJ , φJ ). As an example,
we will describe this for the continuity of the radial velocity. Since only phase differences are
relevant, we may take αJ = 0. Requiring [[u]]J = ud

J − uc
(J ) = 0 and using (7), (8), and

(11–13), we obtain the condition:

X(t) cos(kJ z) −
∑
j �=J

[Y (rj , φJ , φj , t)] cos(kjz − αj) = 0. (19)

In general, X and Y are given by long expressions which provide little information. They will
be made explicit below for L = 3. Here, the important point is that neither X and Y depends
on z. Since (19) must be satisfied for all z ∈ R, we conclude that the wave numbers kJ and
kj must be the same, so kj = k for all j . Moreover, the phases αj take the values 0 or π . If
αj = 0, thread j is in-phase with thread J , whereas for αj = π thread j is out-of-phase with
thread J . We remark that varying the values of αj leads to various, so-called, phase pattern.
We code a pattern by the vector

sn = (sn,1, sn,2, · · · , sn,L)T , with sn,j = ±1 for

{
j = 1, · · · , L

n = 1, · · · , 2L . (20)

Since we have L positions which may take binary values the number of patterns is 2L. How-
ever, because of symmetry, many patterns will have identical break-up behaviour. For a given
phase pattern sn, (19) reduces to

X(t) −
∑
j �=J

sn,j [Y (rj , φJ , φj , t)] = 0. (21)

Here, Y is still written in terms of (rj , φJ , φj ), but we can rewrite the rj and φj dependences
in terms of φJ only. After changing the order of summations, we obtain

X(t) −
∞∑

m=−∞


 ∑

j �=J

sn,j Ŷ (t; |j − J |kb)


 cos mφJ = 0. (22)

Here, Ŷ results from expressing Y in terms of rJ and φJ . Note that Ŷ contains |j − J |b, the
distance between thread J and j . Taking the zero-moment of (22), i.e., integrating over φJ ,
we obtain

X(t) −
∑
j �=J

sn,j Ŷ (t; |j − J |kb) = 0. (23)
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For the zero-order Fourier approach, we remark that we have L×4 unknown coefficients (see
(11) and (12) for m = 0).

To illustrate the theory, we apply it to a system of three threads in a row as shown in
Figure 1. Here, thread J = 1 is taken as reference system. For the zero-order Fourier mode,
the azimuthal velocity vd

1 inside the thread vanishes (see (7)). However, vc
(1) does not vanish in

general, as follows from (13), but since vc
(1) is, after applying Graf’s addition theorem, an odd

function in φ1, its zero-moment is zero. The same holds for τr1φ1 . Retaining in (7) the m = 0
mode only, we have for j = 1, 2, 3,

pd
j (rj , φj , z, t) = pd

j,0(rj , t) cos(kz − αj), (24a)

ud
j (rj , φj , z, t) = ud

j,0(rj , t) cos(kz − αj), (24b)

wd
j (rj , φj , z, t) = wd

j,0(rj , t) sin(kz − αj ), (24c)

while (13) reads in this case as

pc
(1) = pc

1 + pc
2 + pc

3, (25a)

uc
(1) = uc

1 + uc
2 cos(φ1 − φ2) + uc

3 cos(φ1 − φ3), (25b)

wc
(1) = wc

1 + wc
2 + wc

3. (25c)

The evaluation of boundary conditions at the interface S1 requires expressing all quantities in
terms of (r1, φ1). As an example, we will work this out for the continuity of the radial velocity.
From [[u]]1 = ud

1 − uc
(1) = 0, we obtain the condition

X(t) cos(kz) −
3∑

j=2

[Y (rj , φ1, φj , t)] cos(kz − αj ) = 0, (26)

where

X(t) =
(

I0(k) − 2

k
I1(k)

)
A1,0(t) − I1(k)B1,0(t)

−
(

K0(k) + 2

k
K1(k)

)
D1,0(t) − K1(k)E1,0(t),

(27)

and

Y (rj , φ1, φj , t) =
[(

rjK0(krj ) + 2

k
K1(krj )

)
Dj,0(t) + Ej,0(t)K1(krj )

]
cos(φ1−φj). (28)

We recall that, for convenience, we have taken α1 = 0. As argued above with respect to (19),
Equation (26) implies that α2 and α3 can only attain the values 0 and π . This leads to the
following phase patterns:
1. α1 = 0, α2 = 0, and α3 = 0, coded by s1 = (1, 1, 1)T ; all neighbouring threads

disintegrate in-phase.
2. α1 = 0, α2 = π , and α3 = 0, coded by s2 = (1,−1, 1)T ; all neighbouring threads

disintegrate out-of-phase.
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Figure 2. Top view of one of the possible phase patterns if L = 3. Thread 1 and 2 are in-phase and thread 2 and 3
are out-of-phase.

3. α1 = 0, α2 = 0, and α3 = π , coded by s3 = (1, 1,−1)T ; thread 3 disintegrates out-of-
phase from thread 1 and 2.

4. α1 = 0, α2 = π , and α3 = π , coded by s4 = (1,−1,−1)T ; both threads 2 and 3
disintegrate out-of-phase from thread 1.

We remark that, in view of the symmetry of the system, cases 3 and 4 are identical. In Figure 2
one of the possible phase patterns for L = 3 is sketched. For given sn, condition (26) reduces
to

X(t) −
3∑

j=2

sn,j [Y (rj , φ1, φj , t)] = 0. (29)

Expressing all terms with respect to φ1 and taking the zero-moment, we obtain

X(t) −
(
sn,2Ŷ (t; kb) + sn,3Ŷ (t; 2kb)

)
= 0. (30)

The contribution of both thread 2 and 3 is given by the same expression Ŷ , but with different
arguments kb and 2kb. Evaluating the zero-moment of all boundary conditions and choosing
an appropriate ordering of the unknowns, for a given sn (n = 1, · · · , 8), we arrive at a matrix
equation for the unknown coefficients:

(HDn)zn = Dne, (31)

where the matrices H and Dn are defined as

H =



H0 H1 H2

H1 H0 H1

H2 H1 H0


 , Dn =




sn,1I4 0 0

0 sn,2I4 0

0 0 sn,3I4


 , (32)

with 4 × 4 submatrices Hj and identity matrix I4. The vectors zn and e are given by zn =(
zT
n,1, zT

n,2, zT
n,3

)T
and e = (

eT
1 , eT

2 , eT
3

)T
with

zn,j (t) = (A
(n)
j,0(t), B

(n)
j,0 (t),D

(n)
j,0(t), E

(n)
j,0(t))

T and ej = (0, 0, 0, (1 − k2)εj,0(t))
T . (33)
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So, zn and e have length 12. For convenience, we denote the components of zn by zn,l . Explicit
expressions for Hj are given in Appendix A. The matrix H depends on the numbering of the
threads. However, this is just a matter of permutation. The solution of (31) is given by

zn,l = (−1)lsn,[l/4]
1 − k2

|H|


 3∑

j=1

(
sn,j |H(4j,l)|

)
εj,0(t)


 , (34)

where [x] in sn,[x] is defined as the ceiling of x, i.e., the smallest integer greater than or equal
to x. Here, | · | denotes the determinant and H(4j,l) is the 11 × 11 sub-matrix of H which can
be found by omitting the (4j )-th row and the l-th column of H. For example, we obtain

zn,1 ≡ A
(n)
1,0(t)

= −sn,1
1 − k2

|H|
(
sn,1 |H(4,1)|ε1,0(t) + sn,2 |H(8,1)|ε2,0(t) + sn,3 |H(12,1)|ε3,0(t)

)
. (35)

We note that this coefficient is proportional to the amplitudes of the disturbances.
The extension from L = 3 to L > 3 is straightforward. For a given phase pattern sn, we

then have L × 4 unknown coefficients and

H =




H0 H1 · · · HL−1

H1 H0 · · · HL−2

...
...

...

HL−1 HL−2 · · · H0


 . (36)

Equation (34) still holds with 3 replaced by L.

2.1.3. Stability analysis
To analyze the stability of the system we use the kinematic condition (15). For j = 1, · · · , L,
and a given phase pattern sn (n = 1, · · · , 2L) we obtain

dεj,0(t)

dt
= ud

j,0 =
(

I0(k) − 2

k
I1(k)

)
A

(n)

j,0(t) − I1(k)B
(n)

j,0(t), (37)

where

A
(n)
j,0(t) = zn,4j−3 = −sn,j

1 − k2

|H|

(
L∑

l=1

(
sn,l |H(4l,4j−3)|

)
εl,0(t)

)
,

B
(n)
j,0(t) = zn,4j−2 = sn,j

1 − k2

|H|

(
L∑

l=1

(
sn,l |H(4l,4j−2)|

)
εl,0(t)

)
.

(38)

Since A
(n)
j,0(t) and B

(n)
j,0(t) are linear combinations of the amplitudes, we may write

d

dt
(sn,j εj,0(t)) =

L∑
l=1

Qj,lsn,lεl,0(t), (39)
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with

Qj,l = −1 − k2

|H|
(

[I0(k) − 2

k
I1(k)]|H(4l,4j−3)| + I1(k)|H(4l,4j−2)|

)
. (40)

In (39), we have multiplied both sides of (37) by sn,j . In matrix notation, we obtain

dE
dt

= Q(b, µ, k)E, (41)

where E, with elements sn,j εj,0(t), is the vector of the disturbance amplitudes multiplied by
the phase pattern component sn,j , and Q, with elements Qj,l , is an L by L matrix depending on
the distance b, the ratio of viscosities µ, and the wave number k. The stability of the L-threads
system is determined by analyzing the structure of the solutions of (41). Since the dependence
on phase pattern sn is now included in E and the time dependence of any E is determined by
the eigenvalues of Q, we may draw conclusions about the (in)stability of all phase patterns at
the same time from only calculating the L eigenvalues qj , j = 1, · · · , L. The eigenvectors xj

of Q play an important role. These eigenvectors form a basis for the space of possible initial
perturbations E(0). It should be realized that each xj corresponds in a unique way to a phase
pattern via the definition

sj = (sign(xj )1, sign(xj )2, · · · , sign(xj )L)T . (42)

We call such a pattern sj a basic phase pattern and we have L of them. The time evolution of
the j -th basic phase pattern is determined by the real part of qj . Since a general phase pattern
is a linear combination of the basic phase patterns, the (in)stability of the system follows from
the (in)stability of the basic phase patterns, so from the qj . The important conclusion is that,
instead of optimizing over 2L phase patterns, it suffices to calculate the L eigenvalues qj of
Q. Per basic phase pattern we can calculate the growth rate qjmax by optimizing the real part
of qj over all k. The growth rate qmax of the system as a whole is then obtained by taking the
maximum of the qjmax over j = 1, · · · , L. As an illustration, for L = 3 results are given in
Section 4.1.

2.2. TRIANGULAR AND ARBITRARY CONFIGURATIONS

Here, we show how the method presented above can easily be applied to more intricate
configurations. For illustrative purposes we deal with the triangular configuration 	O1O2O3

shown in Figure 3. Take the base line � as the horizontal axis of the system, and let (ri, φi, z)
be cylindrical coordinates at thread i with φi measured counterclockwise with respect to �,
bij = bji be the distance between threads i and j , and βij = βji be the angle between the line
bij and the axis �. So, b12 coincides with the axis � and β12 = 0. Scaling the radial direction ri

and the distance bij by a as in (6), and then omitting the stars notation in the sequel, we obtain
the following geometrical relations for j �= J with j, J = 1, 2, 3 :

rJ cos φJ = rj cos φj + sgn(j − J )

(lM−1∑
l=lm

bl,l+1 cos βl,l+1

)
, (43a)

rJ sin φJ = rj sin φj + sgn(j − J )

(lM−1∑
l=lm

bl,l+1 sin βl,l+1

)
, (43b)
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Figure 3. Coordinate system used for the triangular configuration. Extension to arbitrary configurations of L

threads directly follows from this figure.

where lm = min{j, J } and lM = max{j, J }, and sgn(j − J ) is the sign function defined as

sgn(j − J ) =




−1, j < J,

0, j = J,

1, j > J.

(44)

From Figure 3, we also obtain the relations:

rJ cos(φJ − βJj ) = rj cos(φj − βJj ) + sgn(j − J )bJj , (45a)

rJ sin(φJ − βJj ) = rj sin(φj − βJj ). (45b)

These relations are needed when evaluating the boundary conditions at the interfaces. The
ideas for solving the creeping flow approximation are similar to those in previous section. Let
us outline the method:
− Take (rJ , φJ , z) as frame of reference and as general expressions for the solutions for the

radial velocity, for j �= J with j, J = 1, 2, 3:

uj (rj , φj , z, t) =
( ∞∑

m=0

uj,m(rj , t) cos m(φj − βJj )

)
cos(kj z − αj), (46)

and analogous for vj,wj and pj . As above, the solutions for the Fourier coefficients are
given by (11) and (12).

− Next, take for the continuous phase of the whole system vector addition of the velocities
and scalar addition of pressures. Evaluation of these additions leads to the forms written
as in (13). The evaluation of boundary conditions leads to kj = k for all j ’s and phase
patterns. The evaluation also implies that the product of Bessel functions and a Fourier



38 A.Y. Gunawan et al.

expansion with respect to thread j �= J , should be expressed as a product of functions
with respect to thread J . To this end, we use Graf’s addition theorem and the relations
(43) and (45). To find a finite set of equations for the unknowns, we apply the method
of moments and obtain (41). But now, the components of the matrix H in (32) are Hij

given in Appendix A and H00 ≡ H0. From this point, the analysis is similar to the case
of equally spaced threads in a row.

Results are shown in Section 4.2. For a system of L threads at random positions, the ana-
lysis directly follows from the triangular-thread system. The relations (13), (43) and (45) still
hold. Again, there are 2L phase patterns which are all essentially different if the configuration
does not posses any symmetry. However, for the stability of the system one has to calculate
only the stability of L basic phase patterns.

3. The special case of equal viscosities

If threads and surrounding fluid have equal viscosities, ηd = ηc = η, so µ = 1, the stability
of the system can be established nearly analytically. We shall work out the method in some
detail for an arbitrary number threads in a row. Following the ideas of [20] for the one-thread
system, we first focus on the jump S in the normal stress across the interface. For thread j ,
this jump is given by

Sj = σ

a

∞∑
m=0

(1 − (kja)2 − m2)εj,m(t) cos mφj cos(kjz − αj), (47)

where σ is the surface tension. The idea is to include the jump as a ring force in the momentum
equation:

∇pj = η�vj + erδ(rj − a)Sj . (48)

Here, δ(rj − a) is the delta function and er is the unit vector in the radial direction. Using (6),
(7) and the scaling:

Sj = σ

a
S∗

j , (49)

we obtain equations for the components of (48) and eventually arrive at an extension of (9):

0 = 1

rj

∂
[
rjuj,m

]
∂rj

+ m

rj

vj,m + kjwj,m, (50a)

∂pj,m

∂rj

= 1

rj

∂

∂rj

[
rj

∂uj,m

∂rj

]
− m2 + 1 + (kj rj )

2

r2
j

uj,m − 2m

r2
j

vj,m

+ δ(rj − 1)(1 − k2
j − m2)εj,m, (50b)

−m

rj

pj,m = 1

rj

∂

∂rj

[
rj

∂vj,m

∂rj

]
− m2 + 1 + (kj rj )

2

r2
j

vj,m − 2m

r2
j

uj,m, (50c)

−kjpj,m = 1

rj

∂

∂rj

[
rj

∂wj,m

∂rj

]
− m2 + (kj rj )

2

r2
j

wj,m. (50d)
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Combining (50b) and (50c), we obtain

∂pj,m

∂rj

− m

rj

pj,m =
(

1

rj

∂

∂rj

[
rj

∂

∂rj

]
− (m + 1)2 + (kj rj )

2

r2
j

)
(uj,m + vj,m)

+ δ(rj − 1)(1 − k2
j − m2)εj,m, (51a)

∂pj,m

∂rj

+ m

rj

pj,m =
(

1

rj

∂

∂rj

[
rj

∂

∂rj

]
− (m − 1)2 + (kj rj )

2

r2
j

)
(uj,m − vj,m)

+ δ(rj − 1)(1 − k2
j − m2)εj,m. (51b)

These equations, together with (50a) and (50d), can be solved by means of Hankel transforms.
Let us denote these transforms and their inverses by

Fm
j,n(s) ≡ Hm{fj,n(rj )} =

∞∫
0

rjJm(srj )fj,n(rj )drj ,

fj,n(rj ) ≡ H−1
m {Fm

j,n(s)} =
∞∫
0

sJm(srj )F
m
j,n(s)ds.

(52)

Here, Jm is the Bessel function of the first kind of order m. Applying the Hankel transforms,
we obtain a system of linear equations in the variables (Um+1

j,m +V m+1
j,m ), (Um−1

j,m −V m−1
j,m ), Wm

j,m

and P m
j,m:

0 = s

2
[(Um+1

j,m + V m+1
j,m ) − (Um−1

j,m − V m−1
j,m )] + kjW

m
j,m, (53a)

sP m
j,m = (s2 + k2

j )(U
m+1
j,m + V m+1

j,m ) − (1 − k2
j − m2)Jm+1(s)εj,m, (53b)

−sP m
j,m = (s2 + k2

j )(U
m−1
j,m − V m−1

j,m ) − (1 − k2
j − m2)Jm−1(s)εj,m, (53c)

kjP
m
j,m = (s2 + k2

j )W
m
j,m. (53d)

Solving these linear equations and taking the inverse Hankel transform, we find for the m-th
mode of the radial and azimuthal velocities

uj,m = (1 − k2
j − m2)εj,m

4


 ∞∫

0

s3 + 2k2
j s

(s2 + k2
j )

2

(
Jm+1(s)Jm+1(srj ) + Jm−1(s)Jm−1(srj )

)
ds

+
∞∫

0

s3

(s2 + k2
j )

2

(
Jm−1(s)Jm+1(srj ) + Jm+1(s)Jm−1(srj )

)
ds


 , (54a)

vj,m = (1 − k2
j − m2)εj,m

4


 ∞∫

0

s3 + 2k2
j s

(s2 + k2
j )

2

(
Jm+1(s)Jm+1(srj ) − Jm−1(s)Jm−1(srj )

)
ds

+
∞∫

0

s3

(s2 + k2
j )

2

(
Jm−1(s)Jm+1(srj ) − Jm+1(s)Jm−1(srj )

)
ds


 . (54b)
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Application of [21, Formula 13.53(6)] (an example of these evaluations is given in Appendix
C) leads to

uj,m = (1 − k2
j − m2)

4
εj,m

[
1

2kj

d

dkj

[
k2
j

(
Im+1(kj )Km+1(kj rj ) + Im−1(kj )Km−1(kj rj )

)]

−kj

d

dkj

[
Im+1(kj )Km+1(kj rj ) + Im−1(kj )Km−1(kj rj )

]

− 1

2kj

d

dkj

[
k2
j

(
Im−1(kj )Km+1(kj rj ) + Im+1(kj )Km−1(kj rj )

)]]
, (55a)

vj,m = (1 − k2
j − m2)

4
εj,m

[
1

2kj

d

dkj

[
k2
j

(
Im+1(kj )Km+1(kj rj ) − Im−1(kj )Km−1(kj rj )

)]

−kj

d

dkj

[
Im+1(kj )Km+1(kj rj ) − Im−1(kj )Km−1(kj rj )

]

− 1

2kj

d

dkj

[
k2
j

(
Im−1(kj )Km+1(kj rj ) − Im+1(kj )Km−1(kj rj )

)]]
. (55b)

Here, Im and Km are the modified Bessel functions. As a check on these intermediate results,
we consider the m = 0 mode. The result is the zero-order Fourier mode of the radial velocity,
given by

uj (rj , z) = k2
j (1 − k2

j )


 ∞∫

0

sJ1(s)J1(srj )

(s2 + k2
j )

2
ds


 εj,0(t) cos(kjz − αj). (56)

Rescaling to the full dimensions and taking αj = 0, we find that (56) is in agreement with the
work of [20] for the axisymmetric break-up of a single liquid thread.

Next, consider L threads in a row, equally spaced with distances b. We shall restrict the
discussion to the zero-mode solution, which implies vj = 0. The radial velocity for the whole
system is represented by (13b), with thread J as frame of reference. Hereafter, we omit the
superscript c in (13b) since the fluids have equal viscosities. At the interface of thread J ,
substitution of (55a) for m = 0 in (13b) and application of Graf’s addition theorem yield

u(J ) = A0,0(kJ )εJ (t) cos kJ z+
∑
j �=J

( ∞∑
n=−∞

An,j−J (kj , b) cos nφJ

)
εj,0(t) cos(kjz−αj), (57)

where

A0,0(kJ ) = −kJ (1 − k2
J )

2

d

dkJ

[
I1(kJ )K1(kJ )

]
, (58)

and

An,j−J (kj , b) = kj (1 − k2
j )

2

d

dk

[
I1(kj )Kn(|j − J |kjb)In−1(kJ )

]
. (59)
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Note that An,j−J = An,J−j . On the other hand, according to (3) the interface velocity is given
by

u(J ) = ε̇J,0(t) cos kJ z. (60)

Here, the overdot represents the derivative with respect to time t . Combining (57) and (60),
we obtain

(A0,0(kj )εJ,0(t) − ε̇J,0(t)) cos kJ z

+
∑
j �=J

( ∞∑
n=−∞

An,j−J (kj , b) cos nφJ

)
εj,0(t) cos(kjz − αj) = 0. (61)

Condition (61) is only satisfied for all z if kj = k for all j . Moreover, αj only takes the values
0 or π . Integration of (61) over the interval [0, 2π ] leads to

ε̇J,0(t) = A0,0(k)εJ,0(t) +
∑
j �=J

sn,jA0,j−J (k, b)εj,0(t), (62)

with sn,j defined as in (20). Since we chose sn,J = 1, we rewrite (62) as

sn,J ε̇J,0(t) =
L∑

j=1

sn,jAj−J εj,0(t), with Aj−J ≡ A0,j−J . (63)

Combination of all equations leads to a system of equations as in (41) where

Q =




A0 A1 A2 · · · AL−2 AL−1

A1 A0 A1 · · · · · · AL−2

...
...

...
...

...
...

...
...

...
...

...
...

AL−2 · · · · · · A1 A0 A1

AL−1 AL−2 · · · A2 A1 A0




and E ≡




sn,1ε1,0(t)

sn,2ε2,0(t)
...

sn,LεL,0(t)


 . (64)

The stability of the system is determined by the eigenvalues of Q. For L = 2, the eigenvalues
are simply given by

q+ = A0 + A1, and q− = A0 − A1, (65)

with eigenvectors x+ = (1, 1) and x− = (1,−1), respectively. The q+(q−) are the growth
rates of in-phase (out-of-phase) perturbations. Evaluating A0 and A1, we obtain

q±(k, b) = (1 − k2)

[
I1(k)K1(k) + k

2

(
I1(k)K0(k) − I0(k)K1(k)

)

± I1(k)

(
[kI0(k) − I1(k)]K0(kb) − kb

2
I1(k)K1(kb)

)]
.

(66)

These results are in perfect agreement with [17] where we calculated this result directly from
(41). If b → ∞, when the system approaches the single thread case, the second term of
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(66) vanishes and we arrive at the result of [20]. To determine the stability of the two-threads
system, we can easily calculate the growth rate qmax by optimizing over k.

For L large enough, we can find an upper bound for qmax. In view of the Toeplitz form of
matrix (64), we may exploit the following property (see [22]). Let the 2π -periodic function
h(θ) be given by

h(θ) = A0 + 2
L−1∑
n=1

An cos nθ, (67)

then the eigenvalues of Q in (64) are contained in the interval [M1,M2] where M1 = min
0≤θ≤2π

h(θ),

M2 = max
0≤θ≤2π

h(θ). Since h(θ) is bounded from above by

h(θ) < |A0| + 2
L−1∑
n=1

|An|, (68)

we may take

q(a, k, b) = |A0| + 2
L−1∑
n=1

|An| (69)

as an upper bound. As an illustration, results are given in Section 4.3 for L = 2, 3 and 10
threads.

4. Results

4.1. ROW CONFIGURATION

We apply the theory in Section 2.1 for L = 3; this illustrates the general cases satisfact-
orily. Fixing the geometrical parameter b and the material parameter µ, we calculate the
eigenvalues qj and eigenvectors xj of Q defined by (40) and (41). We find that the eigen-
vectors x1, x2 and x3 give rise, via (42), to the basic phase patterns (1, 1, 1)T , (1,−1, 1)T

and (1, 1,−1)T , respectively. In view of symmetry, the pattern (1,−1,−1)T has the same
behaviour as (1, 1,−1)T . We calculate the growth rates q1max , q2max and q3max by optimizing
the eigenvalues q1, q2 and q3 over all wave numbers k. In Figures 4 and 5 we have plotted
q1max, q2max and q3max as functions of b, for two values of µ. The case µ = 0·04 corresponds to
a situation in which the threads are less viscous than the surrounding fluid, whereas for µ = 4
it is the other way around. The growth rate qmax of the system as a whole is determined by the
envelope of the three curves. The figure provides the information in which pattern the break-
up will occur. The figures show that this strongly depends on µ and b. For µ = 0·04, q2max is
dominant for all b (see Figure 4). This implies that the threads will disintegrate out-of-phase.
However, for µ = 4, the curves cross at two critical distances bcr,1 and bcr,2 (see Figure 5b).
If b < bcr,1 the threads will break up in (1, 1, 1)T (in-phase pattern). If bcr,1 < b < bcr,2 the
threads will break up in the (1, 1,−1)T (mixed pattern), whereas for b > bcr,2 the threads will
break up (1,−1, 1)T (out-of-phase pattern).
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Figure 4. Curves of qjmax as functions of b for µ = 0·04. The patterns corresponding to j = 1, 2 and 3 are
denoted by box, triangle and cross symbols, respectively.

Figure 5. Same information as in Figure 4, but now for µ = 4. Part (b) shows the details of the plot in the vicinity
of the critical distances.

4.2. TRIANGULAR CONFIGURATION

First, we consider three threads at the vertices of an equilateral triangle. So, we take in Figure 3
b12 = b23 = b and β23 = 2π/3. Fixing b and µ we calculate the eigensystem {qj , xj } of Q.
The growth rates qjmax = max

k
{qj (b;µ)} as functions of b are shown in Figure 6 for two

values of µ. In view of the symmetry of the system, we see that the growth rate q2max for
the pattern (1,−1, 1)T coincides with q3max for the pattern (1, 1,−1)T . Since the system has
a lot of symmetry, it can break up in two patterns only. In the in-phase pattern all threads
break up with the same phase, whereas out-of-phase break-up occurs if one thread has a phase
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Figure 6. Same information as in Figure 4, but now for the equilateral triangle configuration.

Figure 7. Curves of qjmax as functions of β23 for µ = 0·04 and b12 = b23 = 4. The patterns corresponding to
j = 1, 2 and 3 are denoted by box, triangle and cross symbols, respectively.

difference with the other two. For µ = 0·04 we find that the system will break up out-of-phase
for all b. For µ = 4, we find a critical distance bcr such that the system will break up either
in-phase or out-of-phase.

We also calculate qjmax for non-equilateral triangle configurations by varying the angle
β23. In Figures 7 and 8 we plot qjmax as functions of β23 for two values of µ. For µ = 0·04
and b12 = b23 = 4 we see that the (1,−1, 1)T pattern is dominant for all values of β23

(see Figure 7). For µ = 4, in Figure 8a we find that β23 = 2π/3 is a critical angle such
that for β23 < 2π/3 the (1, 1,−1)T is dominant and for 2π/3 < β23 < π the (1,−1, 1)T .
This depends on the value of b, e.g. for µ = 4 and b12 = b23 = 3 the pattern (1, 1, 1)T is
always dominant as shown in Figure 8b. In Figures 7 and 8 we see that the growth rates of the
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patterns (1,−1, 1)T and (1, 1,−1)T are the same for β23 = 2π/3 since then the system has
more symmetry.

Figure 8. Same information as in Figure 7, but now for µ = 4, and for two values of the sides length.

4.3. NO-VISCOSITY DIFFERENCES

For convenience, we define for the 2-threads system q±
max ≡ max

k
{q±(k; b)}. These functions

of b are shown in Figure 9a. We see that there exists a critical distance bcr at which the
dominant behaviour changes. As extra information we give in Figure 9b plots of k+

max(b) and
k−

max(b), which are defined as those k values for which q+(k, b) and q−(k, b) attain their
maximum values q+

max(b) and q−
max(b), respectively. The growth rate is given by the envelope

of these curves, so by qmax = max
k

{q+(k; b), q−(k; b)} and shown in Figure 10 for L = 2, 3

and 10. We also calculate an estimate for qmax. Using a similar procedure for qmax we obtain
the results shown in Figure 11 for L = 2 and 10. Comparing the results qmax and qmax, we see
that this upper bound is quite a good approximation for the maximum growth rate, especially
if b ≥ 3.

5. General conclusions

In this paper, we have shown how the problem of the break-up of a cylindrical interface due to
surface tension can be generalized to an arbitrary number of interacting immersed interfaces.
By showing the principles of the theory for a row and a triangular configuration, we could
explain how arbitrary numbers of threads in arbitrary configurations have to be treated. The
two most general conclusions are as follows. First, all threads break up either in-phase or with
a phase difference of π , i.e., out-of-phase, with respect to the other threads. This implies that
for a system with L threads, there are in principle 2L phase patterns for break-up possible.
However, since in practice any perturbation will tend to destabilize the system in a random
fashion, the phase pattern with the highest growth rate will win and be observed. In this
paper we have shown extensively how the growth rates of phase patterns can be calculated. In
principle this would involve optimization over all possible phase patterns. Our second general
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Figure 9. Curves of the growth rates q+
max (box) and q−

max (triangle) and the corresponding wave number k±
max as

functions of b for the two-threads system.

Figure 10. Curves of qmax as functions of b for systems with 2, 3 and 10 threads.

Figure 11. Comparison of calculated values of qmax (box) with the values of the upper bound qmax (triangle) for
two and ten threads.
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conclusion is that this is not necessary, but that the optimization involves only the L so-called
basic phase patterns. This reduces the amount of work considerably.

By applying the theory to specific cases we find that, in general, the ratio of viscosities
of threads and solvent is a highly determining factor. If the threads are less viscous than the
solvent, the break-up pattern with the threads out-of-phase is most unstable. If the threads are
more viscous than the solvent, it is found that not one pattern is dominant. Then, it heavily
depends on the details of the configuration which pattern will win. The system is found to
exhibit a wealth of bifurcations: if a geometrical parameter is slightly varied, the system may
suddenly change from one break-up pattern to another. For blending of viscous material this
is important information, since out-of-phase patterns are more favourable for mixing than
in-phase patterns.

We have also derived an analytical expression to estimate the growth rate for the special
case of the fluids having equal viscosity. For L threads on a row we found an analytical upper
bound, and showed via numerical simulations that this upper bound is quite close to the least
upper bound.
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Appendix A. Matrix H

Explicit expressions for the block matrices H0, Hj and Hij , i, j = 1, 2, · · · .

H0 =




kI0(k) − 2I1(k) −kI1(k) −(kK0(k) + 2K1(k)) −kK1(k)

−kI1(k) kI0(k) −kK1(k) −kK0(k)

−2µkI ′
1(k) 2µkI1(k) −2kK ′

1(k) 2kK1(k)

2µ(kI1(k) − 2I ′
1(k)) −2µkI ′

1(k) −2(2K ′
1(k) − kK1(k)) −2kK ′

1(k)




Hj =




0 0 (jkbK1(jkb)I1(k) − kK0(jkb)I0(k) + 2K0(jkb)I1(k)) kK0(jkb)I1(k)

0 0 −(jkbK1(jkb)I0(k) − kK0(jkb)I1(k)) −kK0(jkb)I0(k)

0 0 −(2jkbK1(jkb)I1(k) − 2kK0(jkb)I0(k) + 2K0(jkb)I1(k)) −2kK0(jkb)I1(k)

0 0 −2(kK0(jkb)I1(k) − jkbK1(jkb)I ′
1(k) − 2K0(jkb)I ′

1(k)) 2kK0(jkb)I ′
1(k)




Hij =




0 0 (kbijK1(kbij )I1(k) − kK0(kbij )I0(k) + 2K0(kbij )I1(k)) kK0(kbij )I1(k)

0 0 −(kbijK1(kbij )I0(k) − kK0(kbij )I1(k)) −kK0(kbij )I0(k)

0 0 −(2kbijK1(kbij )I1(k) − 2kK0(kbij )I0(k) + 2K0(kbij )I1(k)) −2kK0(kbij )I1(k)

0 0 −2(kK0(kbij )I1(k) − kbijK1(kbij )I
′
1(k) − 2K0(kbij )I

′
1(k)) 2kK0(kbij )I

′
1(k)




Appendix B. Expressions derived from Graf’s addition theorem

Let us consider Figure 3. As an illustration, we evaluate the product of Bessel function and
a Fourier expansion of (r3, φ3) in terms of (r1, φ1) at point P1 (r1 = 1). For simplicity, take
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kj = k for all j and introduce �l = φl − β13 for l = 1, 3. The addition theorem states that for
r1 = 1 < b13,

Km(kr3) cos m(π − �3) =
∞∑

n=−∞
Km+n(kb13)In(k) cos n�1

= (−1)mKm(kr3) cos m�3.

(B1)

The relation also holds with cos replaced by sin and (−1)m by (−1)m+1. Using (45) and (B1)
we find for m ≥ 0,

r3Km(kr3) cos m�3 cos(�1 − �3) = (−1)m
∞∑

n=−∞

[
Km+n(kb13)In(k)

−1

2
b13(Km+n−1(kb13)In−1(k) + Km+n+1(kb13)In+1(k))

]
cos n�1.

Km+1(kr3) cos((m + 1)�3 − �1) = (−1)m+1
∞∑

n=−∞
Km+n(kb13)In−1(k) cos n�1.

Km−1(kr3) cos((m − 1)�3 + �1) = (−1)m−1
∞∑

n=−∞
Km+n(kb13)In+1(k) cos n�1.

r3Km+1(kr3) cos m�3 = (−1)m+1
∞∑

n=−∞

[
Km+n(kb13)In−1(k)

−b13Km+n+1(kb13)In(k)

]
cos n�1.

(B2)

Appendix C. Evaluations of (54) and An,j−J

As for the evaluation of the expressions in (54), we only work out the m = 0 case, since the
other cases follow analogously. From [21, Equation 13.53(6)], we have for n odd,

cos

(
n + 1

2
π

) ∞∫
0

snJ1(s)J1(srj )

s2 + k2
j

ds = −kn−1
j I1(kj )K1(kj rj ), (C1)

provided that rj ≥ 1. Differentiating both sides of (C1) with respect to kj , we obtain

cos

(
n + 1

2
π

) ∞∫
0

snJ1(s)J1(srj )

(s2 + k2
j )

2
ds = 1

2kj

d

dkj

[
kn−1
j I1(kj )K1(kj rj )

]
. (C2)

To calculate An,j−J , we proceed as follows:

uj,0 cos(φJ − φj) = −kj (1 − k2
j )

2

d

dkj

[
I1(kj )K1(kj rj ) cos(φJ − φj )

]

= kj (1 − k2
j )

2

d

dkj

[ ∞∑
n=−∞

I1(kj )Kn(|j − J |kjb)In−1(kJ rJ ) cos nφJ )

]

=
∞∑

n=−∞

(
kj (1 − k2

j )

2

d

dk

[
I1(kj )Kn(|j − J |kjb)In−1(kJ rJ )

])
cos nφJ .

(C3)
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Summation follows from the first formula of (B2). The interchange of the order of summation
and differentiation is allowed thanks to the uniform convergence of the series. From (C3),
since calculations are carried out at rJ = 1 we define

An,j−J = kj (1 − k2
j )

2

d

dkj

[
I1(kj )Kn(|j − J |kb)In−1(kJ )

]
. (C4)
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